Wall crossing for symplectic vortices and quantum cohomology
نویسندگان
چکیده
منابع مشابه
Wall crossing for symplectic vortices and quantum cohomology
We derive a wall crossing formula for the symplectic vortex invariants of toric manifolds. As an application, we give a proof of Batyrev’s formula for the quantum cohomology of a monotone toric manifold with minimal Chern number at least two.
متن کاملEquivariant Cohomology and Wall Crossing Formulas in Seiberg-Witten Theory
We use localization formulas in the theory of equivariant cohomology to rederive the wall crossing formulas of Li-Liu [7] and Okonek-Teleman [8] for Seiberg-Witten invariants. One of the difficulties in the study of Donaldson invariants or Seiberg-Witten invariants for closed oriented 4-manifold with b2 = 1 is that one has to deal with reducible solutions. There have been a lot of work in this ...
متن کاملSymplectic Cohomology for Stable Fillings
We discuss a generalisation of symplectic cohomology for symplectic manifolds which weakly fill their contact boundary and satisfy an additional stability condition. Furthermore, we develop a geometric setting for proving maximum principles for Floer trajectories, and prove a Moser-type result for weak fillings. This is a preliminary version of the paper.
متن کاملDeformations of Symplectic Vortices
We prove a gluing theorem for a symplectic vortex on a compact complex curve and a collection of holomorphic sphere bubbles. Using the theorem we show that the moduli space of regular strongly stable symplectic vortices on a fixed curve with varying markings has the structure of a stratified-smooth topological orbifold. In addition, we show that the moduli space has a non-canonical C -orbifold ...
متن کاملQuasimap Floer Cohomology for Varying Symplectic Quotients
We show that quasimap Floer cohomology for varying symplectic quotients resolves several puzzles regarding displaceability of toric moment fibers. For example, we (i) present a compact Hamiltonian torus action containing an open subset of non-displaceable orbits and a codimension four singular set, partly answering a question of McDuff, and (ii) determine displaceability for most of the moment ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2006
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-005-0736-1